Tetrahedron Letters, Vol.27, No.14, pp 1573-1574, 1986 0040-4039/86 \$3.00 + .00 Printed in Great Britain ©1986 Pergamon Press Ltd.

REACTION OF CARBON DIOXIDE WITH PROPARGYL ALCOHOL CATALYZED BY A COMBINATION OF Ru₃(CO)₁₂ AND Et₃N

Yoshiyuki Sasaki

National Research Institute for Pollution and Resources, Yatabe Ibaraki 305, Japan.

Summury : The reaction of CO_2 with propargyl alcohol catalyzed by $Ru_3(CO)_{12}$ and Et_3N gives 2-oxo-propyl-2'-propynyl carbonate in an appreciable yield. The similar reaction of 1-butyn-3-ol gives the corresponding carbonate together with 2,3-dioxycarbonyl-1-butene.

Although much interest has been paid to fixation of CO₂ in organic compounds, catalytic reaction is rare. α -Ethynyl-tert-alcohols like 3-me-thyl-1-butyn-3-ol are known to undergo an addition reaction with CO₂ giving 1:1 adducts (α -methylene-cyclic carbonates) in the presence of CuCl and Et₃N⁽¹⁾, but no catalytic reaction of propargyl alcohol with CO₂ has yet been reported. In this paper it is reported that non-cyclic β -oxo-alkyl carbonates were formed through the 1:2 addition of CO₂ with α -Ethynyl-prim or sec-alcohols catalyzed by Ru₃(CO)₁₂ and Et₃N under mild conditions.

$$2 \text{ HC} \equiv \text{CCH}_2 \text{OH} + \text{CO}_2 \xrightarrow[\text{Ru}_3(\text{CO})_{12}^{-\text{Et}_3N} \\ 0 \\ (1)$$

When a mixture of propargyl alcohol (1 mL), CH_3CN (7 mL), Et_3N (2 mL) and $Ru_3(CO)_{12}$ (0.2 mmol) was stirred at room temperature for 45 h under 50 kg/cm2 pressure of CO_2 , 2-oxo-propyl-2'-propynyl carbonate (I) was formed in 27% yield based on propargyl alcohol as shown in Table 1. Small amounts of propargyl carbonate and hydroxyacetone were also detected. The other polymeric products were not analyzed. The yield of (I) based on a ruthenium atom was 368%. Controlled experiments showed that neither $Ru_3(CO)_{12}$ nor Et_3N alone catalyzed the reaction. A combination of CuCl and Et_3N was not a catalyst for this reaction.

When the reaction was carried out in EtOH (7 mL) instead of CH_3CN , ethyl-2-oxo-propyl carbonate (II) was formed in 15% yield through the 1:1:1 addition of CO_2 , propargyl alcohol and EtOH.

1573

1-Butyn-3-ol also reacted with CO2 to give 1-methyl-2-oxo-propyl-1'-methyl-2'-propynyl carbonate (III) and 2,3-dioxycarbonyl-1-butene (IV) under similar conditions.

As the cyclic carbonate (IV) reacted smoothly with 1-butyn-3-ol to give (III) in the presence of Et_2N at room température, X-methylene-cyclic carbonate is considered to be a precursor of non-cyclic eta-oxo-alkyl carbonate although the corresponding cyclic carbonate was not detected in the case of propargyl alcohol.

	сн _з сн _з	CH2=C - CHCH3	
	ł i		
сн ₃ ссн ₂ ососн ₂ сн ₃ и и о о	CH ₃ CCHOCOCHC≡CH ∥ ∥ 0 0	° ° °	
(II)	(III)	0 (IV)	

TABLE 1 : REACTION OF CO, WITH ACETYLENIC ALCOHOLS (a)

Cat.	Acetylenic alc.	Solv.	conv.	β -oxo-alkyl (b) carbonate	Yield (c)
Ru ₃ (CO) ₁₂	нс≡ссн ₂ он	сн _з си	69	(I)	27 ^(d)
CuCl	нс≡ссн ₂ он	THF	9	-	0
Ru ₃ (CO) ₁₂	HC≅CCH ₂ OH CH ₂	EtOH	66	(II)	15
RuCl _j 3H ₂ 0	нс≅сснон	снзси	76	(III)	22 (e)

- (a) cat. 0.2 mmol, solv. 7 mL, Et_3N 2 mL, acetylenic alc. 1 mL, CO_2 50 kg/cm2; room temp. 45 hrs.
- (b) The structures of products were determined by the following data : (I) : IR. (liquide) 3270 (HC≡), 2140 (C≡C), 1750 (0C00), 1725 (C=O), 1280 (C-O); ¹H NMR. (CDC1₃), 2.24 (3H,s,CH₃), 2.59 (1H,t,HC≡, J=2Hz), 4.79 (2H,s,OCCH₂O), 4.87 (2H,d,OCH₂C≡,H=2Hz); GC-MS 157 (M+1)⁺.

 - (II): IR. (liquid) 1750 (0C00), 1730 (C=0), 1270 (C-0); ¹H NMR. (CDC1₃) 1.35 (3H,t,CH₃CH₂O-, J=7Hz), 2.20 (3H,s,CH₃CO-), 4.32 (2H,q, CH₃CH₂O-, J=7Hz), 4.75 (2H,s,-0CH₂CO-); GC-MS 147 (M+1)⁺.
 (III): IR. (fiquid) 3270 (HC=), 2150 (C=C), 1750 (0C00), 1730 (C=0), 1260 (C-0); ¹H NMR. (CDC1₃) 1.48 (3H,d,CH₃,J=6Hz), 1.63 (3H,d,CH₃, J=6Hz), 2.23 (3H,s,CH₃CO), 2.73 (1H,t,HC=), 5.15 (1H,q,CH,J=6Hz), 5.45 (1H,q,CH,J=6Hz); GC-MS 185 (M+1)⁺.
 (IV): IR. (liquid) 1820 (C=0) 1680 (C=C) 855 (CH -). ¹H NMP (CDC1)
 - IR. (liquid) 1820 (C=0), 1680 (C=C), 855 (CH₂=); ¹H NMR. (CDCl₃) 1.60 (3H,d,CH₂,J=6.5Hz), 4.40,4.84 (2H,m,CH₂=), 5.31 (1H,m,CH, J=6.5Hz); GC-MS 115 (M+1)⁺. (IV) ;
- (c) Yield, based on acetylenic alcohol, were determined by g.l.c.
- (d) A slight deposition of polymeric product was observed on the wall of autoclave.
- (e) (IV) was also formed in 12% yield.

reference

(1) P. Dimroth, H. Pasedach, German Patent 1098953 (1961), BASF; C.A. 56, 2453 (1962).

(Received in France 17 December 1985)